Experimental and Numerical Investigation of the Three- dimensional Flow at Expiration in the Upper Human Airways

نویسندگان

  • Franka Schröder
  • Andreas Lintermann
  • Michael Klaas
چکیده

This study presents a comparison of numerical and experimental results of the steady flow field in the left main-bronchus of the upper human airways during exhalation. Stereo-particle-image velocimetry measurements were performed in multiple parallel measurement planes for a Reynolds number ofRe = 700based on the hydraulic diameter of the trachea to determine the highly three-dimensional flow in a realistic transparent silicone lung model. The numerical analysis is based on a Lattice-Boltzmann method. The results for the absolute velocity and the out-of-plane velocity component show a good agreement and emphasize the three-dimensionality of the flow. Two fluid jets, originating from two principal sub-bronchi, predominate the flow in the investigated bronchus. The vortical structures consisting of two pairs of counterrotating vortices are not generated by the curvature of the main-bronchus or the sub-bronchi but are caused by the merging of the flows and the redirection of the jets. Further downstream in the bronchus, the secondary flow structures vanish in the streamwise direction such that no spiral-like flow enters the trachea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Study of Movement Path in Two-dimensional Wing Flow Separation: Experimental Investigation

The aim of this experimental study is two-dimensional investigation of cargo behavior after separation which is carried out in the subsonic wind tunnel. Given that the real separation occurs in three-dimension, the results of this study may be widely used in numerical aerodynamic studies for verification of new computational methods and they can be used as the reference results in this area. So...

متن کامل

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

Micro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways

Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject.   A computational model for analyzing the airflow in the airways was developed and several simulations were performed.  To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...

متن کامل

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Experimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids

In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014